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ABSTRACT

Solar flare forecasting mainly relies on photospheric magnetograms and associated physical features to predict forthcoming flares.
However, it is believed that flare initiation mechanisms often originate in the chromosphere and the lower corona. In this study,
we employ deep learning as a purely data-driven approach to compare the predictive capabilities of chromospheric and coronal
UV and EUV emissions across different wavelengths with those of photospheric line-of-sight magnetograms. Our findings indicate
that individual EUV wavelengths can provide discriminatory power comparable or better to that of line-of-sight magnetograms.
Moreover, we identify simple multimodal neural network architectures that consistently outperform single-input models, showing
complementarity between the flare precursors that can be extracted from the distinct layers of the solar atmosphere. To mitigate
potential biases from known misattributions in Active Region flare catalogs, our models are trained and evaluated using full-disk
images and a comprehensive flare event catalog at the full-disk level. We introduce a deep-learning architecture suited for extracting
temporal features from full-disk videos.

Use \titlerunning to supply a shorter title and/or \authorrunning to supply a shorter list of authors.
1. Introduction

Solar flares are sudden bursts of electromagnetic radiation and
energetic particles that can pose significant threats to human
health and technology. Their potential danger is typically as-
sessed based on the intensity of the emitted soft Soft X-Rays
(SXR) flux. Flares are classified into five categories: A, B, C,
M, and X, with each class representing a peak SXR flux that
is one order of magnitude higher than the previous class. The
M-Class threshold marks the point from which flares are con-
sidered strong, while the X-Class threshold indicates flares that
present the most serious threats to society. A significant research
effort is given on identifying physical precursors of flares, of-
ten derived from photospheric magnetograms. For example, the
FLARECAST project identified 209 potential flare precursors,
with 94% of them related to Active Region (AR) magnetic field
properties (Georgoulis et al. (2021)) Another important trend,
initiated by Huang et al. (2018), involves using deep learning
as a purely data-driven approach, employing neural networks
to magnetogram images. In contrast, the potential of chromo-
spheric and coronal observations for flare prediction remains less
explored despite the belief that flare-triggering mechanisms orig-
inate in these regions (Shibata & Magara 2011; Toriumi & Wang
2019). One barrier to investigating the upper atmospheric lay-
ers for flare precursors is the current observational limitations
in deriving magnetograms and related physical quantities from
these regions. However, this challenge may soon be addressed
at the chromospheric level with upcoming projects like the So-
lar Activity Monitor Network (SAMNet) Erdélyi et al. (2022)

and the Global Automatic Telescopes for Exploring the Sun
(GATES) Giovannelli et al. (2020); Konow et al. (2024) which
aim to provide high temporal coverage of chromospheric magne-
tograms. Moreover, instruments like the Solar Dynamic Obser-
vatory (SDO) (Pesnell et al. (2012)) and its Atmospheric Imag-
ing Assembly (AIA) (Lemen et al. (2012)) already provide rich
spectral data that may offer valuable thermal and morphological
plasma features for both the chromosphere and the corona. In
this context, Dissauer et al. (2023) introduced a dataset of AR
AIA patches, from which Leka et al. (2023) derived chromo-
spheric and coronal features based on moment analysis, achiev-
ing promising results. Notable precursors identified include to-
tal emission, steep brightness variations, and high-order mo-
ments of running differences, which suggest a tendency for short,
small-scale brightening events in flare-imminent regions. Addi-
tionally, Sun et al. (2023) utilized Convolutional Neural Net-
work (CNN)s with AIA coronal images to forecast flares above
the M-class threshold, achieving state-of-the-art results. Both
Leka et al. (2023) and Sun et al. (2023) identified the 94Åline
emission as particularly predictive of upcoming flares. Sun et al.
(2023) further demonstrated that averaging predictions of single-
wavelength models outperforms individual models’ predictions.
The performance improvement achieved by ensembling models,
such as model bagging, can typically be attributed to the law of
large numbers. Specifically, under the assumption of indepen-
dent and identically distributed Gaussian errors, averaging mod-
els’ outputs reduces error variance, as individual errors tend to
cancel each other out. However, this method does not exploit
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potential dependencies between the distinct models’ features,
which might also enhance predictions.

In this study, we aim to extend the works of Leka et al. (2023)
and Sun et al. (2023) by:

1. Comparing the discriminative power of chromospheric and
coronal features with those derived from line-of-sight mag-
netograms.

2. Investigating potential linear and non-linear complementari-
ties between features from different atmospheric layers using
multimodal models.

3. Exploring the discriminative power of long-term temporal
features in addition to single-timestep features.

We utilize Deep Learning as a purely data-driven approach
on full-disk images produced by the SDO. This full-disk ap-
proach complements the AR-level approach of Leka et al. (2023)
and Sun et al. (2023), and reduces mislabels due to known mis-
attributions in AR datasets. Such misattributions, as highlighted
by van der Sande et al. (2022), can affect up to 8% of flares
above the M-class threshold, and up to 20% of these events are
simply missing in the standard GOES Flare catalog. Although
the Heliophysics Event Knowledgebase (HEK) corrects many of
these issues, some flares remain misattributed or unaccounted
for, potentially compromising model training and evaluation in
the already challenging context of imbalanced and scarce data.
Our focus is on binary forecasts of the occurrence of at least
one flare above the M-class threshold within 24-hour windows.
This paper is organized as follows: Section 2 describes the data,
Section 3 describes the models and training methods, Section 4
describes the results and discussions.

2. Data

We use the SDO-2H-ML image dataset introduced in Francisco
et al. (2024). This is a 2 hour resolution datasett ranging from
May 2010 to April 2023, for a total amount of about 54000
dates for which are associated the corresponding Line-Of-Sight
(LOS)-magnetogram and AIA images in the wavelength 1600Å,
304Å, 171Å, 193Å, 211Å and 94Å. The AIA images are prepro-
cessed through alignment, exposure normalization, correction
for instrument degradation, and are then downsampled to a reso-
lution of 1024x1024 pixels. AIA and HMI pixel values undergo
logarithmic scaling and are reduced to 8-bit depth, preserving the
majority of the original pixel distribution with minimal informa-
tion loss, while also reducing the dataset’s size. The image are
then compressed as JPEGs, resulting in another moderate loss of
small-scale and high frequency details. In an ablation study, we
found in Francisco et al. (2024), that such JPEG compression, as
well as a further downsampling to 448x448 pixels, had no signif-
icant impact on the resulting model performances. We therefore
work again with the 448x448 resolution. We use the same flare
catalog as in Francisco et al. (2024), which is an extension of
Plutino et al. (2023)’s catalog.

3. Methodology

3.1. Models

3.1.1. Single Timestep Models

To predict flares using single-wavelength images or magne-
tograms, we employ transfer learning from models pre-trained
on the ImageNet dataset Deng et al. (2009). The extensive
sample and class diversity in ImageNet enable models to

learn general hierarchical filters and features that transfer well
to different problems and datasets. Research by Kornblith
et al. (2019) indicates that for new problems with limited
data, fine-tuning all layers of a pre-trained model on the new
dataset yields optimal performance, typically proportional to
the model’s original performance on ImageNet. Consequently,
we use the EfficientNetV2-S Tan & Le (2021). As of now,
EfficientNetV2 models are among the best-performing CNN ar-
chitectures, significantly outperforming ResNet models He et al.
(2015). EfficientNetV2 incorporates advanced residual blocks,
including Mobile Inverted Bottleneck Convolution (MBCConv)
Sandler et al. (2018), which captures complex features with
fewer parameters by expanding and then reducing the feature
number. Additionally, Fused-MBConv blocks, introduced for
that model, optimizes MBConv by merging pointwise and
depthwise convolutions into a single step. These innovations
contribute to the model’s parameter efficiency and performance.
The EfficientNetV2 also appears more adapted to our problem
than state-of-the-art Vision Transformers (ViTs) Dosovitskiy
et al. (2020), such as Swin Liu et al. (2021b) and SwinV2 Liu
et al. (2021a), as they only provide slightly better performance,
while being harder to fine-tune with small datasets. Indeed, ViTs
generally require larger datasets, extensive data augmentation,
and regularization techniques Steiner et al. (2021), which can
also reduce the effectiveness of transfer learning Kornblith
et al. (2019). We choose the EfficientNetV2-S variant with 20
million parameters as it offers a good compromise between
performance and ease of fine-tuning for our relatively small
training dataset. We remove the top convolutional and prediction
layers and replace them with a final convolutional layer with 16
filters, followed by batch normalization and Swish activation.
This configuration is more suited to our binary classification
problem and smaller dataset than the original 1280 filters. This
final convolution block is followed by a global pooling layer,
resulting in 16 features that are fed to a final dense layer with
2 neurons and a softmax activation, outputting the probabilities
for the negative and positive classes.

To adapt grayscale images to the model, which is pre-trained on
RGB images, we duplicate each grayscale image twice to create
a 3-channel input. Each resulting model will be denoted by
Efn-w, where w is the corresponding wavelength in Ångstroms,
and Efn-BLOS for the magnetogram.

For single-timestep multimodal inputs, we compare the
following approaches:

1. Pretrained EfficientNetV2-S on RGB combinations of single
inputs. This approach leverages the transfer learning capa-
bilities of the model originally trained on RGB images. We
compare two combinations: a full coronal combination of
193 Å, 211 Å, and 94 Å wavelengths (Efn-193x211x94), and
a cross-atmospheric combination of the magnetogram, 304
Å, and 94 Å wavelengths (Efn-BLOS x304x94).

2. Features fusion from single-wavelength models. In this ap-
proach, we combine features extracted from separately
trained single-input models into a unified fully connected
layer to investigate the linear complementarity between fea-
tures from different inputs. Specifically, we perform this fu-
sion for the cross-atmospheric combination of the magne-
togram, 304 Å, and 94 Å wavelengths. The resulting model
is denoted EfnFuse-BLOS x304x94.

2



3.1.2. Video Models

To incorporate temporal dynamics in analyzing the best-
performing inputs, we study models using videos composed of
13 frames spaced 2 hours apart, covering the 24 hours preced-
ing the forecasting window. Previous studies, such as Guas-
tavino et al. (2022); Guastavino et al. (2023), have performed
flare forecasts on magnetogram videos of ARs using combi-
nations of 2D-CNN and Long Short-Term Memory (LSTM),
while Sun et al. (2022) utilized 3D-Convolutions. Our study,
however, focuses on full-disk videos rather than ARs and com-
pares EUV multimodal inputs to magnetograms alone. Full-
disk videos present unique challenges, and we propose a novel
deep learning model designed to effectively infer local solar
events from such videos. While 2D convolutions and associ-
ated downsampling techniques—such as strides and max pool-
ing—emphasize frame-dominant features, these features may
originate from different ARs across distinct full-disk frames.
This can complicate the learning of meaningful temporal pat-
terns when using subsequent timeseries models like LSTMs, as
the resulting time series of features may correspond to differ-
ent ARs at different timesteps. In contrast, 3D convolutions bet-
ter preserve the temporal coherence of features across frames.
We propose a hybrid approach, Video Local Event Neural Sys-
tem (VideoLENS), for full-disk videos that maintains this tem-
poral coherence and captures short-term patterns using 3D con-
volutions, while also leveraging long-term dependencies through
LSTM cells and an attention mechanism (Vaswani et al. (2017)).
The VideoLENS architecture is illustrated in Figure 1 and de-
tailed in Table 1. The model begins with an initial block of 3D
convolutions (C3D Block) that scales the original full-disk in-
put down to features with a spatial scale comparable to ARs.
Specifically, the C3D Block is designed so that each pixel in the
final output feature map has an original spatial receptive field
slightly larger than the largest possible ARs, accounting for their
rotation during the 24 hours covered by the 13 input frames. As
shown in Figure 1, each final time series of features (indicated in
dark orange) consequently contains information localized to the
corresponding original receptive field (shown in blue), ensuring
that the time series accurately represents the temporal evolution
of the corresponding solar region. A Local-Timeseries Block is
then applied to each of these feature timeseries to derive more
complex temporal features then used for local predictions. This
block starts with a multi-head attention layer that computes at-
tention scores along the temporal dimension, ensuring that each
timestep is contextually aware of the entire time series and em-
phasizing the most relevant parts. An LSTM layer is then used
to learn long- and short-term features localized to ARs. Subse-
quently, a pixel-local prediction layer, consisting of a fully con-
nected neuron with sigmoid activation, predicts the probability
of a flare at each spatial region. The final full-disk prediction
is derived as the maximum of these local predictions, obtained
through a GlobalMaxPooling layer that aggregates the local pre-
dictions. The resulting model can therefore aslo be used as a
semi-supervised framework able to learn spatial label while only
receiving non spatial one at training. It thus extend the Patch-
Distributed-CNN (P-CNN) presented in Francisco et al. (2024)
to video input, while removing the limitations of the patches ar-
tificial boundaries of this former model. Similarly to the P-CNN,
precise position estimation of the predicted events could then be
calculated from gradient methods for each of the local predic-
tion.

3.2. Training and hyperparameters

We use the same full disk Cross-Validation (CV) method as pre-
sented in Francisco et al. (2024). Specifically temporal buffers of
27-days are used to create independent temporal chunks that are
selected by optimisation to build balanced training and valida-
tion folds. This result in a 5-fold CV done on the period ranging
from May 2010 to December 2019, while the period from Jan-
uary 2020 to April 2023 is unaltered, meaning every sample and
the natural distribution of the data is preserved and kept as a
complementary test set. Our models are trained using the Adam
optimizer Kingma & Ba (2014). We conducted a Bayesian pa-
rameter search for the EfficientNetV2 model with magnetogram
inputs (Efn-BLOS ) to determine an optimal learning rate and the
potential inclusion of a weight decay parameter. Although de-
coupled weight decay regularization Loshchilov & Hutter (2017)
is typically employed to reduce overfitting risk, we found it to
have minimal impact on the fine-tuning of the pre-trained Ef-
ficientNetV2. This observation is consistent with the findings
of Kornblith et al. (2019), which indicated that regularization
methods may not always be useful in various transfer learning
scenarios. Our results also showed that fine-tuning the Efficient-
NetV2 generally converges in fewer than 10 epochs across most
parameter combinations tested. This rapid convergence aligns
with Kornblith et al. (2019), who reported that fine-tuning pre-
trained models typically requires significantly fewer epochs than
training from scratch —approximately 17 times faster. Based on
the parameter search results, we train all EfficientNetV2-based
models with a learning rate of 3 × 10−4 for 15 epochs and with-
out weight decay regularisation. For the VideoLENS models, a
manual parameter search revealed that a slight weight decay reg-
ularization of 1 × 10−5 marginally enhances performance. We
also found an optimal learning rate that remains the same as for
the EfficientNetV2 models, at 3×10−4. Finally, we use weighted
binary cross-entropy as the loss function to fully address class
imbalance.

3.3. Evalutation

To compare the predictive power of the models, we focus on the
Area Under the Curve (AUC) of the Receiver Operating Char-
acteristic (ROC), the True Skill Statistic (TSS), the Heidke Skill
Score (HSS) and the Matthews Correlation Coefficient (MCC).
The ROC curve gives a model’s achievable recall as a function of
the False Positive Rate (FPR) over the different decision thresh-
olds. It directly relates to the TSS which is one of the preferred
metrics in flare forecasting studies (Bloomfield et al. (2012)), as
the vertical distance between the diagonal and the ROC corre-
spond to the TSS at the corresponding threshold. Optimal ROC
AUC values therefore improve the likelihood of finding a thresh-
old with good TSS values. The ROC AUC is an easily inter-
pretable value of a classifier’s discriminatory power as it corre-
sponds to the probability that among two random positive and
a negative samples, the classifier will assign a higher probabil-
ity output to the positive one. The TSS, (Peirce (1884), Hanssen
& Kuipers (1965), Woodcock (1976)) is defined as the differ-
ence between the recall and the FPR. Also known as the (book-
maker) informedness, Peirce’s index or Younden’s J index, it is
also equal to the balanced accuracy rescaled between -1 and 1 :

TS S =
T P

T P + FN
−

FP
FP + T N

= T PR − FPR, (1)
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VideoLENS Diagram

Fig. 1: Video Local Event Neural System (VideoLENS) Diagram. The architectures of the C3D and Local-Timeseries blocks are
detailed in Table 1. The blue initial block represents the original receptive field of the time series shown in dark orange. The final
local predictions are derived from these features, providing event predictions that are localized to their respective original receptive
fields.

Table 1: VideoLENS Architecture

Layer Kernel Stride Regularisation Activation Output

C3D block (13, 14, 14, 16)
Convolution3D (1) 16 x (3, 3, 3) (1, 2, 2) BN Swish (13, 224, 224, 16)
MaxPooling3D (3, 3, 3) (1, 2, 2) ø ø (13, 112, 112, 16)
Convolution3D (2) 16 x (3, 3, 3) (1, 2, 2) BN Swish (13, 56, 56, 16)
Convolution3D (3) 16 x (3, 3, 3) (1, 1, 1) BN Swish (13, 56, 56, 16)
Convolution3D (4) 8 x (3, 3, 3) (1, 1, 1) BN Swish (13, 56, 56, 8)
Convolution3D (5) 8 x (3, 3, 3) (1, 1, 1) BN Swish (13, 56, 56, 8)
Convolution3D (6) 8 x (3, 3, 3) (1, 2, 2) BN Swish (13, 28, 28, 8)
Convolution3D (7) 8 x (3, 3, 3) (1, 1, 1) BN Swish (13, 28, 28, 8)
Convolution3D (8) 8 x (3, 3, 3) (1, 1, 1) BN Swish (13, 28, 28, 8)
Convolution3D (9) 8 x (3, 3, 3) (1, 1, 1) BN Swish (13, 28, 28, 8)
Convolution3D (10) 16 x (3, 3, 3) (1, 2, 2) BN + DP(0.2) Swish (13, 14, 14, 16)

Local Timeseries Block (14, 14, 1)
MultiHead-Attention 4-head x 16-dim residual connection LN + DP(0.2) ø (13, 16)

LSTM 16-cells ø BN ø (16)
Dense (local predication) 1 ø ø Sigmoïd (1)

GlobalMaxPooling ø ø ø ø (1)

Architecture of the VideoLENS. BN : Batch Normalisation. LN : Layer Normalisation. DP(0.2) : dropout with a rate of 0.2. The
Local Timeseries Block is applied to each spatial-point of the attention layer output, i.e. to ervery (13, i, j, 16) with (i, j) ∈ J1, 14K2

.

or equivalently

TS S = T PR + T NR − 1, (2)

where TPR and TNR represent the true positive rate and true
negative rate, respectively. It is noted that the TSS and ROC AUC

suffer some limitations in measuring a model’s ability to discrim-
inate properly between two classes.
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The two metrics only encompass information about the suc-
cess rate of detection in each class, without information about
the precision with which predictions are made. In imbalanced
cases, this flaw allows high TSS and ROC AUC to mask models
that distinguish between negative and positive with poor preci-
sions (Jeni et al. (2013)). In the specific case of flare forecast-
ing, some studies, exhibit TSS and ROC AUC that are higher for
M+ forecasting than C+ forecasting on the same datasets (e.g.
Guastavino et al. (2022), Leka et al. (2023)). This gives the mis-
leading impression that the models discriminate better stronger
flare than medium ones, whereas they usually have precision at
least twice as small when predicting these stronger events. The
HSS, defined in equation 3, was originally introduced by Hei-
dke (1926) for evaluating weather forecasts. Also known as Co-
hen’s Kappa index, it is widely used in flare forecasting to com-
pare a model’s skill relative to a random guess model (Campo-
reale (2019)). The HSS is particularly comprehensive for imbal-
anced datasets, as it combines information from the TSS with
the Markedness, which synthesizes the class-wise precision of
the model’s predictions for each class, including both Positive
Predictive Value (PPV) and Negative Predictive Value (NPV).
The Markdness is the precision analog to how the TSS captures
class-wise accuracy, synthesizing True Positive Rate (TPR) and
True Negative Rate (TNR). For a deeper understanding of how
the HSS integrates both TSS and Markdness, one can refer to
the mathematical analysis presented in Delgado & Tibau (2019).
This analysis highlights the close relationship between the HSS
and the binary correlation coefficient, which serves as a geomet-
ric average between TSS and Markdness. Specifically, from the
α and β coefficients in Delgado & Tibau (2019), the HSS can
be understood as the harmonic mean of Informedness (TSS) and
Markedness, adjusted for the model’s frequency bias.

HS S = 2 ∗
T P ∗ T N − FN ∗ FP

P(T N + FN) + N(T P + FP)
, (3)

where P and N represents the total number of positive and
negative samples, respectively. The MCC (Matthews (1975)),
defined in equation 4, is the Pearson correlation coefficient be-
tween two binary variables. It contains similar information to the
HSS with constant even weighting between TSS and the Markd-
ness. It thus provides an agnostic measure of a model discrim-
inatory power as it takes into account all the basic confusion
matrix rate of a model giving equal importance to each of them.
This makes it particularly suitable to assess models discrimina-
tory powers on imbalanced problems. We provide a more detail
comparison of the TSS, HSS and MCC and discussion of their
strength and limitations in Francisco et al. (2024) (section 2.1.1
of and associated appendix).

MCC =
T P ∗ T N − FN ∗ FP

√
P(T N + FN) ∗ N ∗ (T P + FP)

(4)

4. Results & Discussions

Figures 2, 4, 3 and 5 present the performance metrics of the mod-
els: ROC AUC, HSS, TSS and MCC respectively. The plots rank
the models based on their performance, with a consistent ranking
observed across all three metrics. Notably, while ROC AUC val-
ues are clustered within a narrow range (+16% from the worst to
the best model), the MCC, HSS and TSS demonstrate more pro-
nounced disparities in model performance (with maximum per-
formance gaps of +54% and +51%, respectively). The results

also show stability between validation and test sets, indicating
good generalization capabilities. However, the model using the
1600Å wavelength exhibited a marked decline in HSS and TSS
by 24% and 26%, respectively, on the test set compared to the
validation set. This performance drop may be attributed to the
learning of unrelevant features from the 1600Å wavelength that
persist across the 27-day buffer period of the CV folds, leading
to potential overfitting on the validation data. In addition, there
might be some pattern specific to the solar cycle’s 24th period
which does not generalize to the next cycle. This finding under-
score that even rigorous CV methods do not guarantee perfor-
mance generalization in operational settings. Consequently, in-
corporating a separate operational test set, as advocated by Cinto
et al. (2020), appears essential for a more comprehensive evalu-
ation of model performance.

4.1. Coronal and Chromospheric Features are Most
Predictive of Flares

The 94Å wavelength provides the most discriminative features
for flare prediction, consistent with findings from Leka et al.
(2023) and Sun et al. (2023). Compared to the line-of-sight mag-
netograms, the Efn-94 model shows a significant improvement,
with a 3.4% increase in TSS on the test set and a 10.4% in-
crease on the validation set. Additionally, HSS values improve
by 12% on the test set and 9% on the validation set. Although
the 193Å and 211Å wavelengths demonstrate similar or lower
predictive performance to the line-of-sight magnetograms, their
combination with the 94Å wavelength in the Efn-193x211x94
model results in a further enhanced HSS, showing an overall in-
crease of 18% on both the test and validation sets compared to
the magnetograms alone. This suggests that the relative intensity
variations between these three wavelengths may serve as effec-
tive precursors for flare events. Chromospheric observations also
contribute valuable predictive features. While the lower chromo-
spheric wavelength of 1600Å exhibits weak generalization per-
formance on the test set, the upper chromospheric wavelength
of 304Å emerges as the second most predictive single input, fol-
lowing the 94Å wavelength.

4.2. Features from Different Atmospheric Layers
Complement Each Other

Combining features from various solar atmospheric layers en-
hances overall performance compared to using the single best-
performing layer. The model EfnFuse-BLOS x304x94, which in-
tegrates features from E f n − BLOS , E f n − 304, and E f n − 94,
outperforms the E f n − 94 model by 5.7% and 7.4% in HSS
on the test and validation sets, respectively. While improve-
ments in TSS and ROC AUC are more modest, the notable
increase in HSS indicates enhanced precision, with improved
performances in discriminating ambiguous cases. We found
that, cross-atmospheric feature complementary is most effec-
tive through feature fusion after training individual models for
each input (EfnFuse-BLOS x304x94). Training a single model di-
rectly on the cross-atmospheric channel combination with the
pretrained EfficientNetV2 ((Efn-BLOS x304x94) does not surpass
the performance of the model using the most predictive channel
alone, conversely to the coronal wavelength combination (Efn-
193x211x94). This result might arises from the 2D-CNN archi-
tecture, where combining multiple channels in early convolu-
tional layers treats them as a distinct feature dimension.

6



ROC AUC

Fig. 2: ROC AUC of various models. Efn-input denotes the EfficientNetV2-S model trained on individual frame input. EfnFuse-
inputs refers to a logistic regression model utilizing features extracted by EfficientNetV2-S models trained on each of the distinct
inputs. VideoLENS represents the video-based models.

TSS

Fig. 3: Models’ TSS. Models’ labels are the same as the ones described in 2.
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HSS

Fig. 4: Models’ HSS. Models’ labels are the same as the ones described in 2.

MCC

Fig. 5: Models’ MCC. Models’ labels are the same as the ones described in 2.

.
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Filters learn different weights for each channel, and sum their
outputs to form the feature map. This approach is particularly ef-
fective for features that complement each other linearly, such as
the coronal wavelength channels in the Efn-193x211x94, which
capture different emission lines of similar coronal structures. In
contrast, magnetograms, chromospheric images, and coronal im-
ages — representing more distinct physical layers and processes
- might not combine linearly as well in the first convolutional
layers. Alternative approaches to improve cross-atmospheric
models performance could include using 3D convolutions in the
initial layer of a single model, or training on all layers simul-
taneously the distinct bock of the EfnFuse-BLOS x304x94, rather
than pre-training them separately. However, this latter method
may require larger datasets or data augmentation to prevent
overfitting due to the increased model complexity. Ultimately,
while combining features from different atmospheric layers en-
hances performance, it does not significantly surpass the results
achieved with the three coronal channels in the Efn-193x211x94
model.

4.3. Temporal Dynamics Enhance Predictive Performance
Compared to Static Features

The VideoLENS-193x211x94 model outperforms all others,
showing up to a 5.8% improvement in ROC AUC, a 14%
increase in TSS, and a 23% enhancement in HSS over the
Efn-BLOS model. When compared to the static single-frame
model Efn-193x211x94, the VideoLENS-193x211x94 achieves
improvements of up to 5.6% in TSS and 4.4% in HSS. At-
tempts to combine other wavelength pairs, such as the cross-
atmospheric combination BLOS x304x94, using both parallel
processing and an RGB-like processing approach similar to
VideoLENS-193x211x94, did not yield models significantly sur-
passing the performance of the Efn-193x211x94 single-frame
coronal model. These results underscore that the 193x211x94
wavelength combination provides some of the most predictive
information for flare forecasting among the atmospheric layer
combinations tested. The Efn-193x211x94 and VideoLENS-
193x211x94 models achieve HSS scores of 0.46 and 0.48, re-
spectively, significantly surpassing other known full-disk models
for forecasting M+ flares within 24 hours. For context, Pandey
et al. (2023) reports an HSS of 0.35 for a similar problem using
full-disk line-of-sight magnetograms over a comparable valida-
tion period.

4.4. VideoLENS Ablation Study

The VideoLENS architecture was evaluated through an ablation
study to determine the impact of various components on model
performance. This study revealed that incorporating local-wise
predictions and the time-series block offered slight improve-
ments in ROC AUC compared to models using only C3D with
global pooling. Increase in model size, through the number of
filters or parameters of the attention and LSTM layers, did not
result in significant performance gains, likely due to the modest
size of the training dataset. At equal number of parameters, fewer
C3D layers but more filters performed less effectively, indicating
that simply increasing the number of filters is not beneficial with-
out careful architectural tuning. More importantly, every C3D-
based models consistently outperformed 2D-CNN-LSTM archi-
tectures, highlighting that the latter may not be as effective for
analyzing full-disk videos. This is attributed to the tendency of
the 2D-CNN component to capture features from various ARs

across different frames, when multiple ARs coexist during the
video.

4.5. The last and first flare challenge

An examination of model performance revealed that all models
exhibited roughly null TSS and HSS scores when evaluated on
the samples’ subsets where the label of the predicted time win-
dow differed from the previous time window. This confirm that
our previous observations from Francisco et al. (2024) gener-
alise to a wide range a input modalities and to the use of low
temporal resolution data to forecast flares. Specifically, the mod-
els struggle to forecast events that occurred in the next 24 hours
following a period of inactivity, as well as to forecast a quiet
period when flares occurred in the past 24 hours. This indicates
that while the models can effectively predict flares when there
is a persistent level of activity, they face substantial difficulties
in scenarios involving activity changes, with performance akin
to random guessing in these transitional cases. The current most
predictive flare precursors might, therefore, be more indicative
of the current activity level of an AR rather than being actually
predictive.
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5. Conclusion and Future Works

For years, studies on solar activity forecasting have been em-
ploying the photospheric AR complexity (computed either from
continuum images or from magnetic field information) to predict
the AR flare activity (e.g., Schrijver 2007; Korsós et al. 2015;
Benvenuto et al. 2018; Korsós et al. 2020; Cicogna et al. 2021).
However, it is widely accepted that the coronal magnetic topol-
ogy and dynamics are crucial to driving and then triggering the
release of solar eruptions.
Since direct information on the coronal magnetic field is still
not available for such studies, researchers are using as a proxy
the EUV multiwavelength images to reveal the onset mechanism
of solar flares in case studies (Gosain 2012; Imada et al. 2014;
Bamba et al. 2014) and also for statistic approaches (Dissauer
et al. 2023; Leka et al. 2023). Such uses have been recently ex-
tended to deep-learning approaches to automatically extract flare
precursors from EUV images to build models for flare forecast-
ing (e.g., Sun et al. 2023; Nishizuka et al. 2020). Following this
trend, we created a suitable dataset for DL approaches and inves-
tigated different 2D and 3D CNN models, exploiting the mul-
tiwavelength EUV images from the AIA instrument, the pho-
tospheric LoS magnetogram from the HMI instrument, and the
temporal dimension.
Below is a summary of the main findings from this study:

1. Enhanced Forecasting with Coronal Wavelengths:
The use of coronal EUV wavelengths emissions notably
enhances forecasting performance compared to relying on
photospheric line-of-sight magnetograms. The combination
of emission lines at 193 Å, 211 Å, and 94 Å proves par-
ticularly effective. This suggests that the relative intensity
between EUV wavelengths may provide crucial information
about flare precursors. Future research will focus on a
detailed investigation of the Efn-193x211x94 model to
identify specific precursors through explainability methods
and gain further insights into flare mechanisms.

2. VideoLENS Architecture and Temporal Dynamics: The
VideoLENS architecture is an efficient way to forecast
localized solar events from full-disk videos. Notably, the
use of such model to incorporate temporal dynamics in flare
predictive features yields superior performance compared to
single-timestep input models. Specifically, the VideoLENS
model using the 193 Å, 211 Å, and 94 Å wavelengths
achieves an HSS of 0.50 and a TSS of 0.65, substantially
outperforming typical full-disk models that forecast M-class
flares within the next 24 hours.

3. Challenges in Forecasting Activity Changes: All tested
models exhibit limitations in forecasting transitions in ac-
tivity levels. This suggests that the features derived from
the studied inputs are more indicative of current activity
levels rather than exclusive predictors of upcoming flares.
While the inherent stochasticity of complex physical systems
may partly explain these limitations in forecasting activity
changes, further research could be of interest.

Future work will explore higher temporal resolution features
than the 2 hours used in this work as well as different forecasting
window sizes, and the addition of other data modalities such as
SXR and Extreme Ultraviolet (EUV) flux timeseries.
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6. List of Acronyms

AR Active Region
CNN Convolutional Neural Network
EUV Extreme Ultraviolet
LOS Line-Of-Sight
LSTM Long Short-Term Memory
SDO Solar Dynamic Observatory
TSS True Skill Statistic
HSS Heidke Skill Score
MCC Matthews Correlation Coefficient
P-CNN Patch-Distributed-CNN
AIA Atmospheric Imaging Assembly
SXR Soft X-Rays
CV Cross-Validation
VideoLENS Video Local Event Neural System
AUC Area Under the Curve
ROC Receiver Operating Characteristic
FPR False Positive Rate
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